

Abstract
The paper “Using Rescheduling and Flexible Execution to
Address Uncertainty in Execution Duration for a Planetary
Rover” [Agrawal et al. 2019] discusses several rescheduling
and execution techniques to allow a scheduler to respond
effectively to changes in execution, such as activities ending
earlier or later than expected. We discuss these techniques
both theoretically and practically in the context of limited
CPU, nonzero runtime, embedded scheduler intended for
NASA’s next planetary rover.

1 Introduction
The paper summarized by this extended abstract [Agrawal
et al., 2019] subsumes the paper titled “Embedding a
Scheduler in Execution for a Planetary Rover” [Chi et al. ,
2018] which was accepted to ICAPS 2018. The previously
accepted paper [Chi et al., 2018] discusses the rescheduling
methods and includes some discussion of Flexible
Execution. However, it does not include discussion of
activities taking longer than expected.

 In the current paper, in addition to the rescheduling
methods, we present two algorithms to address how to
handle activities running long. Furthermore, the empirical
results we present in the current paper are more extensive
both because more realistic inputs have become available
since the submission of the previous paper and the current
results include analysis based on additional factors such as
the scheduler taking less time to run than expected and
activities taking longer than expected. We also include
significantly more detailed empirical analysis on how well
our defined computation model to measure performance
applies to our problem inputs, as well as which factors
contribute to the inaccuracy of the theoretical model as it
applies to our inputs.1

© 2019 California Institute of Technology. US Government
sponsorship acknowledged.

2 Goal of the Scheduler
The goal of the scheduler [Rabideau and Benowitz, 2017] is
primarily to schedule all activities and secondly to schedule
activities such that the schedule has the shortest possible
makespan, where the makespan is the difference between
the latest time an activity is scheduled to end and the earliest
time an activity is scheduled to start. A shorter makespan
implies more resources such as time, energy, and data
volume are freed.

3 Non-zero Scheduler Runtime
Since the scheduler is invoked multiple times during
execution to generate updated schedules and has a nonzero
runtime, we must know what to execute while the scheduler
is running. We choose to use the concept of a commit
window to execute activities based on the previously
generated schedule. The commit window is in interval of
fixed duration from the current time and any activity whose
scheduled start time is within the commit window is
committed and cannot be rescheduled by the scheduler. We
use a commit window that is equal to the predicted
scheduler run time, Tsc_p. So, even if the scheduler takes less
time than expected to run, it cannot reschedule to start
activities earlier than now + Tsc_p. We apply a high margin
so we assume the scheduler will not take more time than
expected to run.

4 Framework for Analysis
The framework we use to quantify the performance of the
rescheduling and Flexible Execution methods quantifies
how the techniques are able to reduce the makespan by
mitigating two kinds of losses which result in unusable time
and a longer makespan:
• Scheduler runtime loss- the time that the scheduler is
 unable to recoup while the scheduler is running
• Scheduler invocation loss- the time lost due to waiting to
 reinvoke the scheduler (e.g. not invoking the scheduler
 immediately after an activity ends early)

Extended Abstract- Using Rescheduling and Flexible Execution to Address
Uncertainty in Execution Duration for a Planetary Rover

Jagriti Agrawal, Wayne Chi, Steve Chien

Jet Propulsion Laboratory, California Institute of Technology
{firstname.lastname}@jpl.nasa.gov

5 Rescheduling Methods
We discuss two rescheduling methods. Using Fixed
Cadence Scheduling, the scheduler is invoked periodically
every C seconds. Since the scheduler is invoked at a
predetermined time using this method, it is often unable to
react effectively to changes in execution, resulting in both
scheduler runtime loss and scheduler invocation loss. Using
Event Driven Scheduling, the scheduler is invoked in
response to changes in execution (e.g. if an activity ends
later or earlier than expected by some threshold or if it is
vetoed and removed from the current schedule to be
considered in the next scheduler invocation). Since the
scheduler is invoked immediately after an activity ends
early, scheduler invocation loss is eliminated if the threshold
for Event Driven Scheduling is set accordingly.

6 Flexible Execution
We discuss Flexible Execution (FE) as a method to update
start times of activities when the scheduler is not running.
We discuss two FE algorithms, Extended Veto and Extended
Push. Both algorithms perform the same when activities end
earlier than expected but they vary when activities run late.
We use the concept of a dispatch window, a fixed amount of
time after Now. FE is only able to modify start times of
activities which are scheduled to start within the dispatch
window. We also use the predecessor-successor
relationships between activities, which affect whether
activity start times can be adjusted. The predecessor-
successor relationship (e.g. Activity A must complete
successfully before Activity B starts) is one of relative
ordering between activities that share the same unit
resources or establish precedence between one another.

6.1 Extended Push
We discuss how FE handles activities running late. Using
the Extended Push algorithm, if a predecessor activity runs
long, then the start time of the successor activity is pushed
until the predecessor activity completes or until an
execution time constraint (dictating the time windows
during which the activity is allowed to occur) is violated. If
multiple consecutive activities must be pushed because they
are in a chain of predecessor-successor relationships, then
the chained activities will continue to be pushed as long as
execution constraints are not violated.

6.2 Extended Veto

Using the Extended Veto algorithm, the successor activity
will be pushed up to some amount, M, but it may also be
vetoed under certain conditions.

7 Empirical Evaluation
In order to evaluate each of the strategies, we apply them to
various sets of inputs called sol types comprised of activities
and their constraints. Sol types are currently the best

available data on expected Mars 2020 rover operations. We
use the M2020 surrogate scheduler to construct a schedule
from the inputs and simulate execution. The surrogate
scheduler is the same implementation as the M2020 onboard
scheduler but runs much faster as it is intended for a Linux
workstation. We use 8 different sol types where each sol
type contains between 20 and 40 activities. Since data from
MSL indicates that activities completed on average 28
percent early, for our model to determine activity execution
durations, we choose from a normal distribution where the
mean is 72 percent of the original, predicted duration
([Gaines et al., 2016], [JPL, 2017]). The standard deviation
determines the percentage of activities that will take longer
to execute than expected.

7.1 Conclusions from Analysis
From our analysis we conclude that Event Driven
scheduling with Extended Push FE algorithm results in the
highest percentage of activities successfully executed when
the number of activities that longer than expected is varied.
When activities never take longer than expected, Event
Driven scheduling with either FE algorithm results in the
highest makespan gain.

Using our computational model for scheduler
runtime and invocation loss, we find that Fixed Cadence
Scheduling results in the lowest makespan gain and the
most loss. Event Driven scheduling decreases both
scheduler runtime and scheduler invocation loss compared
to Fixed Cadence scheduling and FE with Event Driven
scheduling further reduces scheduler invocation loss. We
also conclude that execution time constraints (earliest and
latest times activities are allowed to start), setup activities
(required activities such as preheats that must occur before
the activity), and parallel activities (activities not in the
critical path) contribute to the inaccuracy of our
computational model for scheduler runtime and invocation
loss. Removing these factors from the sol types result in an
accurate model.

Acknowledgments
This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

References

[Agrawal et al., 2019] Agrawal, J.; Chi, W.; Chien,
 S. 2019. Using Rescheduling and Flexible
 Execution to Address Uncertainty in Execution Duration
 for a Planetary Rover. In Review.
[Chi et al., 2018] Chi, Wayne, et al. "Embedding a

scheduler in execution for a planetary rover." Twenty-
Eighth International Conference on Automated Planning
and Scheduling. 2018.

[Gaines et al., 2016] Gaines, D.; Doran, G.; Justice, H.;
 Rabideau, G.; Schaffer, S.; Verma, V.; Wagstaff, K.;
 Vasavada, A.; Huffman, W.; Anderson, R.; et al. 2016.
 Productivity challenges for mars rover operations: A
 case study of mars science laboratory operations.
 Technical report, Technical Report D-97908, Jet
 Propulsion Laboratory.

[JPL, 2017] Jet Propulsion Laboratory. 2017. Mars science
laboratory mission https://mars.nasa.gov/msl/2017-11-
13.

[Rabideau and Benowitz, 2017] Rabideau, Gregg, and Ed
 Benowitz. "Prototyping an onboard scheduler for the
 mars 2020 rover." Proceeding of International
 Workshop on Planning and Scheduling for Space,
 Pittsburgh, PA. 2017.

